
Deepsolver: development status
and suggestions

Michael Pozhidaev
michael.pozhidaev@gmail.com

Proceedings of the 10th conference

of FOSS-developers
(Kaluga, Russia,

September 21, 2013)

This report includes a survey of Deep-
solver developing status, covers some notice-
able difficulties faced during the work and of-

fers several suggestions for further implemen-
tation. In contrast with the statements made

by Deepsolver developers earlier, at present
Deepsolver got minisat-based solver. Any 2-

SAT approaches, considered for implemen-
tation previously, cause a lack of flexibil-
ity and that makes them not suitable any-

more. Deepsolver support is now integrated
to girar utilities and successfully deployed

on ALT Linux package building hosts.

Rather difficult problem faced amid devel-

opment process is a unreasonably big number
of the packages affected during user task pro-

cessing. In most cases it can easily lead to re-
moving from the system some set of packages,
which presence does not make the same gen-

eral solution impossible. For example, con-
sider the following situation written as a part

of SAT-equation: (!r ∨ a∨ i). Here r is some
dependent package, a is a package in a repos-

itory and i is a installed package. If algo-
rithm once selected a, i can be either “true”

or “false” without an influence to a solution.

And generally there is no priority between
these branches.

To avoid any unnecessary consequences,

Deepsolver now tries to do a couple of op-
timizations described below, but generally

they are still insufficient and research should
be continued. First attempt tries to predict

which packages will be installed or removed
anyway and exclude corresponding clauses
from the equation, as we already know that

the result does not depend on them anymore.
After an exclusion some previously affected

packages are not involved in equation and
this yields desired result.

The second optimization idea revolves

around packages already installed in the sys-
tem. Once they appear in equation, there

is a chance they will not appear again and
if corresponding clause does not imply in-

tentional package removing, we can consider
such clause evaluated as “true”, since in-
stalled package remains installed. This tech-

nique is called in Deepsolver as “postponed
clauses”. After first appearance of the in-

stalled package, the clause containing it
is constructed but actually is added to equa-

tion only after the second appearance.

These attempts partially solve the prob-
lem of unreasonably affected packages, but

that is not enough yet. The quality of de-
scribed attempts is deeply depended on
the order of the processed packages. The fur-

ther evolution of these ideas is described be-
low and their implementation is in progress

now. All clauses can be divided onto groups
describing the actions needed for installa-

tion or removing of a particular package.
We can define a set of references between

these groups, reflecting what group causes

1

potential installation or removing of a pack-
age. The references should be counted

and, if some of them are removed, we can
launch a garbage collecting strategy to re-

move all groups, left without any references
to them. Removing of references is possi-
ble before and after minisat algorithm ex-

ecution. The first case implies removing
of clauses containing the installed packages,

which do not appear anywhere in a equa-
tion in negative state. After the minisat

launch we can remove the references asso-
ciated with the variables which state is not

changed during SAT-solving. In both cases
after the garbage collecting all variables used
only in removed groups can be safely ignored,

even if SAT-solution yields change of their
value.

We would like suggest several things to be

considered by the community for further
Deepsolver evolution. All of them imply

creation of a new level of package manage-
ment, while current Deepsolver functions im-
plement second level with using the package

formats libraries as first level (librpm, etc.).
All proposed functions do not change any-

thing in current architecture, so, all users
used to work with any APT-like utilities will

not notice any changes.

The first idea proposes adding new enti-
ties for control and processing by Deepsolver
utilities. In particular, such as fonts, jar-

archives etc. Internal implementation should
be done in general form allowing easy and

flexible enhancing with new types of entities
vendor wants. Any additional information

required for association between packages
and entities should be collected on repository

metadata construction, either automatically

or with package maintainers support.

The main reason why package manager is
the most suitable place for a idea like that,

can be easily explained since the package
manager is nearly the single place in a system

with complete awareness what exact soft-
ware and data are accessible through at-
tached repositories. It can intersect en-

hanced information about proposed entities
with list of really available packages and

provide to user the list of available enti-
ties for a given type. For example, the list

of fonts. Even in case of any synchronization
problems, provided information will be al-

ways actual in sense of availability but, prob-
ably, incomplete. We would like to urge
be cautious considering various types of files

to be processed as a entity with package man-
ager. For example, it is unclear whether ker-

nel modules should be handled such manner
or not. There are some cases that must be in-

stalled and removed with traditional admin-
istrative tools.

The second offer proposes designation
of some packages like packages changing sys-

tem behaviour. For example, packaged event
file for acpid service changes buttons han-

dling (in particular, power button). A user
may want to view complete lists of such op-

tions with easy way to change their status
(leading to package installation and remov-
ing). To be a proper option as it is sug-

gested above, a package should be available
for installation or removing without affecting

other packages for consequent installation or
removing. Only the package manager is able

to construct list of options satisfying all re-
quirements, hence, the best quality could

be obtained only if this technique is a package

2

manager essential part. Entities and options
features of a package manager evidently are

well-suited for integration to high-level GUI-

instruments for system configuration, mak-
ing GNU/Linux desktop more user-friendly.

3

