The Framework for Accessible Applications: Text-Based
Case for Blind People

Michael Pozhidaev
National Research Tomsk State University, Computer Science Department
Lenina Avenue, 36, 634050
Tomsk, Russia
msp@altlinux.org

ABSTRACT

This paper offers a Java framework for creating accessible
applications for blind and visually impaired people as part
of a proposed general conception based on the maximum
use of objects filled with text data only. It offers new types
of applications more easily recognizable by disabled persons,
helping them to do their work faster and more comfortably.
Strong and weak points are analyzed. The published proto-
type of the proposed platform is described as well as the con-
clusions of the performed experiments. The prototype is im-
plemented on Java SE and wrapped by a GNU /Linux envi-
ronment as a bootable ISO-image.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques— User interfaces

General Terms

Experimentation

Keywords

accessibility, blind people, user interfaces, usability, Java,
API

1. INTRODUCTION

During last decade we have seen the process of diversifi-
cation of information technologies which people use in their
everyday lives. If during the mid 2000-s almost all tasks were
performed using Microsoft Windows and desktops only, to-
day’s solutions are very different, regardless of whether we
are speaking about software platforms (Mac OS X, iOs, An-
droid are have a wider distribution and very often can be
considered as real competitors to Windows) or about ways
of interaction with PC’s or gadgets (multitouch as a replace-
ment for the mouse). In the meantime, blind and visually
impaired people (from here on in “blind people”) typically

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 2014 ACM 978-1-4503-2889-0/14/10 ...$15.00.

still are not able to enjoy all the advantages of this process,
mostly because the accessibility technologies are just add-
ons to interfaces initially designed for sighted users. This
kind of solution can be considered only a partial solution
since it offers the general ability to do the same things as ev-
erybody but sacrifices the efficiency and level of personal
comfort.

Each time it is necessary to create an application designed
and highly accessible for blind people developers always cre-
ate a usual application for graphical user interface (GUI).
Their main distinguishing characteristics aren’t more than
features to enable the ability to contrast colours and ad-
just font sizes. These functions are only measures for users
with partial sight. If somebody has never dealt with GUI
as a sighted user the complete and proper understanding
is generally impossible (especially for senior users). Respect-
ing the increasing requirements for an accessible environ-
ment we would like to propose a platform designed com-
pletely for blind people which could be a stable solution
for the problems mentioned above.

Speed, comfort and good understandability usually mean
just one thing; keeping things simple. The question is what
kind of user interface (UI) could be simple and at the same
time functionally sufficient. The suggested solution to an in-
terface for blind people is, on one hand, simple enough and,
on the other hand, could provide the replacement for most
GUI widgets. We will discuss the pros and cons, and discover
how visualization and speech output can mutually supple-
ment each other. The prototype of the proposed platform
was published to demonstrate implementation on Java. It
consists of the core maintaining new interface and launched
applications, as well as a set of Java classes making API
for creating new applications. This environment could
be launched on any OS with the Java virtual machine but
we would like to see it as a complete OS on the Linux kernel
(published prototypes are prepared in this way).

2. TEXT-BASED ENVIRONMENT FUNDA-
MENTALS

2.1 General conception

First of all, we would like to describe an alternative solu-
tion to ensure it is really suitable and comfortable the blind.
There is some prior experience in this area described be-
low and we would like to respect it. The new environ-
ment enable speech output and some visual representation
without involving any screen reading software. The picture
on the screen remains very important because it is used

by users with low vision, though it plays only a very supple-
mentary role now. We suggest splitting the screen into sev-
eral rectangular areas, and filling its entire space with some
tiles. Each tile shows some textual data related to the cor-
responding object and is closely associated with speech out-
put. Font size and colour should be easily adjustable to suit
a particular user’s requirements.

The method of how to constructing a comfortable and suf-
ficient speech representation for all objects needed for work
is one of the main goals of our research. It is described
in detail below but, roughly speaking, we are considering
all of the usual GUI widgets in a way where no graphical
and visual data is involved in their representation. For-
tunately, there are only a few cases when it is impossible
(e.g. the web page cannot be described in words without
lost of entirety). Let’s consider, for example, a text edit box:
there is nothing graphical about it, but the selection of some
part of the text with a mouse is performed through choosing
some other colour and this happens by using visual informa-
tion. Hence, we must invent something else for text selection
but there is no need to create anything new for text input
itself.

The environment is designed for distribution with some
standard set of applications prepared and organized
in a new way. At first glance it seems that we will face a
tremendous number of new functions to implement, but ac-
tually there is a wide range of libraries for Java, distributed
under public licenses; so there is no need to do anything
from scratch. We should simply prepare a new interface
for them with our new platform.

2.2 Known experience

Usually blind people use screen readers launched
on a GUI, but we will not review them as we are interested
only in software designed as “audio desktops”. There are cur-
rently three solutions which can be considered as providing
a speech environment without screen reading. All of them
accomplish this in different ways. They are Emacspeak [20],
Dolphin Guide [2] and Adriane [§8]. Emacspeak certainly had
a major impact on the outcome of this paper. It is an add-on
for the popular text editor GNU Emacs [22] which has a lot
of additional features covering areas significantly wider than
just usual text editing, such as file management, mail read-
ing, calendar etc. The main advantage of Emacspeak is that
with some proper training it can help users to be highly ef-
ficient (almost to the level of a sighted user). We are wanted
to keep all of the positive parts of that interesting experience.
However, unfortunately, it has a lot of restrictions existing
mostly as a consequence of its add-on nature (GNU Emacs
has nothing close to such entity as application). All weak
points of emacspeak have been analyzed in our previous pub-
lication [18] in detail.

Dolphine Guide is a high-level screen reader with a lot
of additional information about user interface for a fixed
number of particular applications. It obscures interaction
with these applications and replaces it with its own very
user-friendly environment. Although Dolphin Guide is able
to be a solution for inexperienced users it cannot be consid-
ered as a flexible environment providing efficiency for users
because it handles only a fixed number of use cases. In ad-
dition, Dolphin Guide needs a complete OS (Microsoft Win-
dows) to work.

These problems are also inherent in Adriane except that it

is based on a Gnu/Linux distribution. It involves a number
of applications for various tasks which were wrapped with
speech-enabled interactions. Adriane cannot be considered
as a platform for constructing new accessible applications
because it hasn’t any strict and flexible core providing API
for developers (although its interface could be considered
as quite consistent) and the components it uses are mostly
based on the Dialog [23] utility and Bash scripts [14].

2.3 Prosand Cons

Let us consider all the reasons why our application makes
sense and look at arguments for why it could have some weak
characteristics. To respond to criticism, which we may ex-
pect, we will give additional comments for why we don’t take
them seriously and don’t think these criticisms are crucial.
As a stronger approach, everything is written like it would
be as a complete OS, and we will also look at why the case
of running in an environment on Microsoft Windows is sig-
nificantly weaker.

The statements supporting our proposal could be as fol-
lows:

1. Users no longer need to struggle with GUI and that
saves a lot of time, increasing efficiency. GUI is a very
unsuitable solution because in complicated cases blind
users should reference a screen structure which they
don’t see. On desktops and laptops, GUI is useful only
with a mouse, which is inaccessible for blind users.
With tablet computers, where multitouch is popu-
lar, blind users should be able to touch the screen
in same position multiple times. That is easy to do
having visual information, but in our speech-enabled
case it turns out as a very time consuming procedure.
In the meantime, the presence of GUI is a completely
artificial problem because GUI is created by the hands
of people and isn’t something essential for interaction
with a PC.

2. A new type of interface could be easier to understand
for blind users with a lack of experience with com-
puters, especially seniors. With GUI it is necessary
to have a proper understanding of what it is. That
is not a problem for users who have previously used
a PC as a sighted user. But for those who have never
seen a computer screen such understanding becomes
a really serious problem.

3. The general conception and suggested implementation
could be a platform useful on mobile laptops as well
as on embedded devices based on the ARM platform
[24]. In conjunction with previous point this could
have social value as it would now give access to a wide
range of digital services for disabled people. This
makes it a solution with social value.

4. For experienced wusers there are certain tasks
that can be uncovered with existing solutions. Usu-
ally this is related to speedy software development,
preparing materials with Latex [11] or Lilypond [7]. A
new approach could be well adjusted for these tasks.

Criticism of our proposal could be as follows:

1. It is an environment “in itself”. This makes blind peo-
ple more isolated from society and blocks their access
to software not included in the new system.

2. This proposal requires creating some number of al-
ready existing applications, e. g. for mail reading,
news reading etc.

3. Not all applications could be reconsidered with
the proposed conception. For example, a web-browser
could be accessible only with the screen reading ap-
proach.

Our responses to such criticism would be as follows:

1. About isolation:

e Our conception is best suited to be a user accom-
paniment preferably on mobile computers, while
existing desktop systems remain available and ev-
erybody is still able to use a general purpose OS
like Microsoft Windows or Apple Moc OS X on it.
There is no need to have a specific single univer-
sal computer (in contrast with mobile phone). If
it is launched on Microsoft Windows. Java will
be able to make this happens.

e The system isn’t totally “in itself”. It can provide
access to command line utilities through Bash or
some other shell. In fact, command line utili-
ties are one of the most accessible ways for in-
teraction for blind users. Although, of course,
it is suited mostly for experienced users. In ad-
dition the command line is needed for running
the utilities usually launched exactly in this way
(e. g. “ping”).

e There is a significant gap between potentially pos-
sible and really available features for blind users.
With GUI we may think that they are not iso-
lated but it doesn’t mean that we are really able
to do everything that is needed.

2. About creating new software:

e There is no mneed to develop anything
from scratch. We are working in the area
of Free and Open source software, so we can use
a lot of libraries already created for Java for our
implementation.

e According to the Pareto rule [9], 80% of soft-
ware needs are covered by approximately 20%
of the features in the software. Therefore, we
may expect that there is some appropriate level
of functionality which would be sufficient for most
tasks.

3. About exceptions: yes, there are some exceptions,
but we can include their workarounds into our system
as exceptions. Speaking about the web-browser, we
can take Chromium [12] with the ChromeVox exten-
sion [19] which will run outside of our environment and
that will not bring any inconvenience to the user. Gen-
erally, the complete OS should be some sort of “hybrid”
system if it is based on the proposed platform. Some
popular applications, like photo editing or computer
aided design will never be required because they are
pointless without visual information.

3. THE FRAMEWORK DESCRIPTION
AND LUWRAIN PROJECT

In this section we will consider all of the valuable details
of the Luwrain project which we proposed as an implemen-
tation of the conception and the framework described above.
Although Luwrain includes some research and experimental
tasks we intended to get a stable product and fully functional
OS based on it suitable for developers as well as for a wide
range of consumers with sight restrictions. Anybody who
is interested in getting a complete understanding of what
Luwrain is and how it works is welcomed to try current
prototypes freely published on the corresponding website at
http://luwrain.org/.

We guess that it is necessary to describe this work
from various points of view as we are speaking about not just
a theory but also about an exact technical approach. Most
things described in the sections below should be reflected
in the Luwrain API as a set of Java classes. The Luwrain
classes provide various levels of customization. For example,
the class for list view needs only a set of items and does all
tasks according to the conception. However, if a developer
would like to prepare his/her own controls, he/she has ev-
erything needed to do that. Each application for Luwrain
should be distributed in the form of .jar file as is usual
for Java libraries.

3.1 Accessiblecontrols

The main requirement imposed on a set of controls is
to have functionality equal to that of GUI. Of course, except
obviously, the requirement of being fully accessible for blind
users. Speaking about a “control” we mean here items
such as text edits, list views, menus, tables, forms etc. Forms
include various things, like edits, check boxes, some custom
controls and so on. Every class of a control object should
generate output for the screen and for speech simultane-
ously and in such way that output for speech should be fully
sufficient for any kind of work while output for the screen
plays only a supplementary role. One additional require-
ment for any type of a control is providing access to any
part of the object without potentially inaccessible informa-
tion. This is usually very relevant for exploring the spelling
of any string in a letter-by-letter manner. A lot of users are
unable to completely rely on the pronunciation of a speech
synthesizer.

Text edits. The text edits (both single-line and multiline)
speak the letter under the cursor on left-right move-
ments and speak the line holding the cursor on up-
down movements. On typing any letter, the let-
ter should also be spoken. The important question
is the selection of some text fragment. We guess
that the most convenient way is to set a special point
under the current cursor position to mark the start
of the region, then go to some other position marking
the end of the region and do one of the required oper-
ations (copy, cut or delete). It is a good idea to pro-
nounce a text fragment being cut, copied, deleted
or pasted. On reaching the bounds of a text area,
a corresponding notification should be issued.

List views and menus. All types of items of enumeration
should have a cursor marking not only a particular line,
but also being free to point to any character on this

line. This is necessary as mentioned before for explor-
ing the spelling of the item. On up-down movements
a new item of text should be spoken and the cursor
should go to the beginning of the new line. Every line
should always have one additional empty line (other-
wise, how could we know the text of an item if it is
single and there is no way to go up-down?).

Tree view. Tree views are also possible. We can treat
them as some sort of extension of a list view. If some
particular item has children, it gets a plus or a mi-
nus sign for screen representation and a corresponding
speech notification is added. Pressing the enter but-
ton on such an item consistently expands or collapses
its subitems. The level of the item can be reflected
by the indentation on the screen and corresponding
speech suffixes or prefixes.

Forms. Forms imply a set of various controls such as text
edits, check boxes, drop down lists etc. There are
no problems with them if the constructed forms place
each control on a separate line and adds a correspond-
ing text prefix designating the name of the control.
All lists should be drop down and the item selection
should be carried out through additional popup ar-
eas (see below). There is one noticeable limitation:
each form can contain only one multiline edit and it al-
ways should be placed at the bottom of the form filling
the entire space below all other controls. For example,
such an approach is selected for an area with the pur-
pose of composing a mail message. It has a recipient
address on the first line, and then the subject on sec-
ond, some additional fields, but below all of them there
is a multiline edit for message text.

We described some the most important controls for illus-
tration but, of course, not all of them. Others can be recon-
sidered in the same way as these.

There is one rather serious problem often faced during
work on accessibility technologies: there is an unpredictable
amount of information needed by a user in different situ-
ations. When a user explores a structure of a tree view
he/she should get as much information as possible, but if
he/she looks for some particular known item only the name
is required to be spoken. We suggest to use alt keys like Ctrl
or Alt on the keyboard to switch the mode of output. For ex-
ample, holding the Ctrl key always skips all supplementary
information, saving only the items names.

We should mention one additional trick usually considered
as rather popular and useful. Whereas all controls (lists,
texts, trees or forms can be represented in text form in one or
an other way, a feature to quickly search some text substring
can significantly increase efficiency. For forms no matter
whether this substring appears in editable areas or just in
control names, it should be, so that users easily understand
what it is by themselves.

3.2 Applicationsand tiling

Each application in Luwrain gathers several controls.
Their number and types are defined completely by the pur-
pose of the application. For example, a mail reader should
consist of three controls: tree view with mail groups (Inbox,
Sent Items, etc), the list of mail messages inside a particular
group and the text of a particular message. On the screen

they should be placed in the same way as in a usual GUI
mail client but for users who work through speech only there
shouldn’t be any association between the objects location on
the screen and their behaviour. He/she just has to mind that
there are three objects and it has the proper way to switch
between them.

That could be easily achieved if the environment imple-
mentation takes complete care of the calculation of a con-
trol’s position on the screen. We can even think that there is
no need to have a way to choose the position manually, it is
enough to have a sufficient algorithm giving a suited position
automatically in most cases. For that purpose we would like
to suggest one of them. It would take a tree of tiles, each
node of it has references to the two children and a boolean
attribute whether this node implies dividing ina horizontal
or vertical way. Given screen width and height, it calculates
the position of each tile on the screen.

1. Performing Depth-first search on a tiles tree and calcu-
lating how many leaves has each branch of each node.

2. As a recursive procedure, do the following steps:

(a) Call the procedure providing the screen width and
height as well as the root of the tree.

(b) Indicate if the provided node is a leaf assigned
to it received screen position.

(¢) Perform the dividing of a received screen area
into two parts in proportion, how many leaves
there are under each branch, and handle dividing
direction (horizontally or vertically). After that
perform a call of the procedure for each branch
providing the obtained positions.

According to our experience, this procedure yields rather
good dividing for each application. It is necessary to de-
scribe what an application is in Luwrain design. First of all,
we would like to note that the term “application” doesn’t
reflect the exact nature of the implied object. Very likely
it would be better to call it an “applet” or “add-on” be-
cause Luwrain applications are executed in the same process
as the environment itself (although they are able to initiate
separate threads) and share with the environment the same
memory address space.

The applications are Java classes where objects are reg-
istered in the corresponding manager. There could be mul-
tiple instances of a particular application (e. g., user can
launch several file managers) and in addition there is a spe-
cial technique to prevent some others applications from be-
ing launched twice (e. g., multiple copies of mail fetching
application are pointless). In each case, currently only one
application can be shown on screen and it is the one which
is considered to be active. We are thinking about a special
type of application visible permanently (e. g., for displaying
news feeds) but we still are not sure whether it is really nec-
essary or not. Switching between applications is performed
easily and quickly with the Alt+Tab key combination.

With Luwrain distribution comes a set of standard ap-
plications. They are: double-sided file manager, extendable
text editor, mail reader, news reader, terminal, media player,
the application for office documents preview, personal sched-
uler, calendar, address book etc. Some sort of applications
can be provided in the form of extensions and we would like

to see them as a part of community-driven activity. They
are mostly clients for popular websites, like Twitter, Yandex
and Google services, payment systems, social networks etc.
It is necessary to especially emphasize the question
of clients for digital government services. Their presence
in any assistive technologies could have significant social
value. The question of an accessible alternative for office ap-
plications remains very arguable. Office document exchange
is very active and there is no doubt that corresponding ap-
plications are needed, but full functionality with Microsoft
Office is needless. With Luwrain we intend to provide such
tools, but the set of their features is defined by correspond-
ing Java libraries (see below). Office document represen-
tation in text form should be worked out, but full page
rendering (e. g., for printing) apparently remains impossi-
ble. As a partial measure we suggest to use non-wysiwyg
alternatives, such as Latex, since they are highly accessible,
although they require some training and experience.

3.3 Eventsdispatching and popup areas

The various event dispatching techniques, very likely, are
an essential part of any Ul implementation and Luwrain
isn’t an exception in this sense. Luwrain has several types
of events with corresponding rules of their routing. They
bring information about user actions, notifications about
changes in the environment and do multithreading synchro-
nization. The last is a very important feature, Luwrain al-
lows application developers to initiate as many execution
threads as they need, but all interaction with the Luwrain
core should be done in a multithreading-safe way and
Luwrain provides some features for that.

Actually, there is nothing to describe in detail except one
thing: our environment has special types of areas which ap-
plications are able to show. They are the so called “popup”
areas. Their main distinguishing characteristics is that
they can be shown as one method call, which ends only
on the closing of a corresponding area. Since the envi-
ronment carries out in one single thread, this causes some
difficulties because the popup method call (usually placed
in some event handling code) freezes the entire event loop
execution. This problem is solved by implementing multiple
event loop instances. The first of them is a main environ-
ment event loop and each new loop is launched for every
new popup area. We can think of it as a very usual ap-
proach in UI design.

With popup areas we can show various dialogs and menus,
continuing the execution depending on user choice. For ex-
ample, a couple of popup areas have system-wide meaning.
The first of them is the main menu which is an idea very
close to the “Start” menu in Microsoft Windows. The other
one is a command line always accessible with the Alt+X
key combination. With this prompt a user is able to launch
a particular application or do some action with system-
wide meaning. This feature is very useful when it is nec-
essary to do something in a noisy environment. For ex-
ample, in some cases it is easier to press the Alt+x and
type “mail” than to open the main menu and listen to its
items. This idea of Alt+X command prompt was adopted
from Gnu Emacs but with some modifications.

3.4 Why Java?

Luwrain is implemented mostly on Java. Its environment
is executed completely inside of the Java virtual machine.

The main reasons why we use Java is the large variety of ex-
isting Java libraries and Java is currently a common lan-
guage for any kind of framework and platform. Speaking
about libraries, for instance, if we are creating a mail client
it isn’t necessary to write all the protocol parsers, anyone
can just use Javamail library [4]. Actually the number of in-
volved libraries is relatively large, so we use Apache POI
[1] for office documents format processing (exactly a func-
tionality of this library defines how good documents support
could be), Rome [3] for RSS parsing, and many others.

But the reasons aren’t limited only because of libraries.
Java has a rather stable API which is changed very carefully
and moderately (thoughtless API changing in our opinion
is one of the biggest problems in the world of Open source
libraries). In addition, [15] the current Java speed of execu-
tion is comparable to the speed of C++ and that is a rather
good result (sometimes benchmark resources offers informa-
tion that Java gives 80% overhead over C++ time).

Some questions related to Java remain unsolved.
There are some legal concerns, we can see that corpora-
tions can sue developers over Java [6]. Next, it is unclear
if we could build something on Dalvik (or on coming ART)
[5] which looks more efficient for ARM devices. Hopefully,
these questions could be solved in future.

3.5 System-level services

If we are speaking about a complete OS, we should
keep in mind various services for maintaining network con-
nections and other system tasks, as well as the way of inter-
action between these services and the Ul inside of the Java
virtual machine. Current experience in the GNU/Linux
world demonstrates a tendency towards D-Bus [13] as a tool
for interprocess communication (IPC). Java has a corre-
sponding interface to use D-Bus as well, therefore, we should
just choose projects which provide the necessary functional-
ity with the D-Bus interface. Fortunately, they are present
for almost all tasks:

1. Network manager [25] for manipulating network con-
nections

2. Udisks [26] for removable media management
3. VoiceMan [17] for speech output

Network Manager and Udisks are well-known projects,
speech server VoiceMan has been developed earlier as a part
of the Luwrain project, but it is implemented as a system
service on C++. Currently VoiceMan takes text to speach
through the inet socket, but it is just a temporary measure.

An actively discussed idea of the Systemd service [16]
proposed by Lenard Poettering potentially could be nicely
integrated into the system we are discussing. Installation
on a hard drive can be performed by a blind person with-
out any sighted help using the live system cloning technique
[10] The main window of the Java environment is shown
with X.org server [21] using a custom lightweight window
manager.

If'Luwrain is launched on Microsoft Windows these fea-
tures will be inaccessible or redirected to corresponding Win-
dows components.

4. TESTING AND RESULTS

The experience we already have consists of two parts: a
general conception of testing done in the Emacspeak en-
vironment and user feedback collected on the publication
of the first Luwrain prototype.

Using the proposed conception as it was implemented
in Emacspeak was really successful (the author of this pa-
per successfully graduated university and has done his Ph.D.
thesis using it on a machine). The efficiency is really high
and handles some tricky operations, like an installation with-
out sighted help. In the meantime, it is still difficult to share
this experience with other people because using GNU Emacs
and Emacspeak requires a lot of technical knowledge. Some
design problems of GNU Emacs (e. g., absence of an appli-
cation) don’t allow us to consider it as a platform satisfying
modern trends for popular products.

The first Luwrain prototype published in the form
of a bootable ISO-image was presented on March 1st,
2014. Feedback was obtained from two categories of users:
from newbies and from experienced users. The feedback
from newbies is more valuable because our system should
match the expectations of wide range of users. With
very short prior instructions users easily understood what
they should do if they would reach some particular po-
sition as well as to use some application or open an ob-
ject. In the future these instructions can be offered as brief
guide on system startup. Experienced users wanted to treat
the potential success or failure of the system as being highly
dependent on the ability to get a first stable release, because
this work obviously requires a lot of development resources.

After discussions in foreign communities, the authors may
expect that there could be some interest in solving accessi-
bility problems specifically through such specialized environ-
ments.

5. CONCLUSIONS

We have described all the basic questions related to a spe-
cial framework for developing applications for blind and
visually impaired people. If this product could be imple-
mented completely, blind users would get a free tool for most
of their everyday operations. With it they could read and
write mail, track news, listen to music and books, etc. All
of these things could become available easily. We have omit-
ted the details of possible user perception because with this
paper the description is focused on Luwrain as a framework
for creating accessible applications.

The suggested approach should be considered very care-
fully because accessibility technologies always carry some
difficulties, some amount of things impossible totally.
This fact is quite obvious, for example, when we see that
there are no technologies (and very likely will not ap-
pear for observable future) which could be able to describe
in words any given picture. Blind people never will be able
to do computer aided design and some other tasks in a visual
nature. We should look for sufficient solutions, but not per-
fect ones. With this reality, the project authors are strongly
convinced the proposed conception could solve some rather
tough tasks. To obtain it we spent more than ten years
in research including a large number of experiments.

It is necessary to properly discuss our arguments against
GUIL A text-based environment should not be taken
as a competitor to GUI. In some circumstances the existing
screen reading solutions for Microsoft Windows, GNOME or
Mac OS X can be the only possible solution. For example,

if somebody must use the same applications as everybody
in school or university, then this would be the case. Surely,
the solutions in style of audio desktops should be aimed
at the sectors left uncovered with screen readers and solve
tasks remained unsolved by screen readers.

We are still speaking about work which is just at the phase
of representing first prototypes. And the number one goal
is to get it finished. The real value of this conception can
be measured only by the probability of doing that. If we are
able to solve some technical questions, other things, related
to the available models for such work, still remain obscured.
On the one hand, this project is Free and Open source,
meaning it is non-profitable, on the other hand, it could
have some social value. The question whether there could
be development models, more suitable for this combination,
or not remain opened.

6. REFERENCES

[1] D. V. Ajay Vohra. Use jakarta
poi to generate excel spreadsheets from xml documents.
http://www.javaworld.com/article /2076189 /enterprise-
java/book-excerpt—converting-xml-to-spreadsheet—
and-vice-versa.html, 2006. Retrieved May 27
2014.

[2] Dolphin Computer Access Ltd. Dolphin guide.
http://www.yourdolphin.com/productdetail.asp?id=30,
2014. Retrieved May 27 2014.

[3] M. Fortner. All roads lead to rome.
http://www.jroller.com/phidias/entry/
all roads_lead_to_rome, 2009. Retrieved May 27 2014.

[4] E. R. Harold. JavaMail API. O'Reilly Media, 2013.

[5] D. Helleberg. Android internals: Art in practice.
http://blog.dominik-
helleberg.de/2014/01/28 /android-internals-art-in-
practice/, 2014. Retrieved May 27
2014.

[6] B. Kendall. Oracle wins ruling in case against google
over java. http://online.wsj.com/articles/court-says-
oracle-software-code-entitled-to-copyright-protection-
1399652818, 2014. Retrieved May 27
2014.

[7] P. Kirn. Lilypond: Free, beautiful music notation
engraving for anyone.
http://createdigitalmusic.com/2010/05/14/lilypond-
free-beautiful-music-notation-engraving-for-anyone,
2014. Retrieved May 27 2014.

[8] K. Knopper. Adriane — audio desktop reference
implementation and networking environment.
http://www.knopper.net/knoppix-adriane/index-
en.html, 2014. Retrieved May 27
2014.

[9] R. Koch. The 80/20 Principal. NICHOLAS
BREALEY PUBLISHING, LONDON, 1998.

[10] N. Koneri. Copy your linux install to a different
partition or drive.
http://www.linuxjournal.com/content /copy-your-
linux-install-different-partition-or-drive, 2009.
Retrieved May 27 2014.

[11] L. Lamport. LaTeX: A Document Preparation System.
Addison-Wesley Publishing Company, 2 edition, 1994.

[12] R. Lerner. Switching to chrom(ium).
http://www .linuxjournal.com/content/switching-

20]

(21]

(22]

23]

24]

25]

(26]

chromium, 2013. Retrieved May 27

2014.

R. Love. Get on the d-bus.
http://www.linuxjournal.com/article/7744, 2005.
Retrieved May 27 2014.

C. Newham. Learning the bash Shell. O’Reilly Media,
3 edition, 2005.

Oracle corp. Java hotspotaDé virtual machine
performance enhancements.
http://docs.oracle.com/javase/7/docs/technotes/
guides/vm/performance-enhancements-7.html, 2014.
Retrieved May 27 2014.

L. Poettering. systemd, two years later.
https://archive.fosdem.org/2013 /interviews/2013-
lennart-poettering/, 2013. Retrieved May 27

2014.

M. Pozhidaev. Speech server voiceman.
http://marigostra.com/projects/voiceman/, 2013.
Retrieved May 27 2014.

M. Pozhidaev. The text-based environment for blind
persons: conception and operating system design.
Mezhdunarodnyj nauchno-issledovatelskij zhurnal,
2:63-66, Feb. 2013.

T.V Raman. Chromevox: built-in spoken feedback for
chrome os.
http://googlecode.blogspot.com/2011/05/chromevox-
built-in-spoken-feedback-for.html, 2011. Retrieved
May 27 2014.

T.V Raman. Emacspeak — the complete audio
desktop. http://emacspeak.sourceforge.net/, 2014.
Retrieved May 27 2014.

L. Shiman. X.org foundation releases x window system
x111r6.7. http://lwn.net/Articles/79302/, 2004.
Retrieved May 27 2014.

R. Stallman. Gnu emacs manual.
http://www.gnu.org/software/emacs/manual /pdf/
emacs.pdf, 2013. Retrieved May 27 2014.

J. Tranter. Dialog: An introductory tutorial.
http://www.linuxjournal.com/article/2807, Sept.
1994. Retrieved May 27 2014.

J. W. Valvano. Embedded Systems: Introduction to
ARM Cortex-M Microcontrollers cover. CreateSpace
Independent Publishing Platform, 2012.

R. Yuen. Introducing networkmanager.
http://www.redhat.com/magazine/003jan05/features/
networkmanager/, 2005. Retrieved May 27 2014.

D. Zeuthen. Simpler, faster, better.
http://davidz25.blogspot.com/2012/03 /simpler-faster-
better.html, 2012. Retrieved May 27

2014.

