Introducing LUWRAIN:
Can GNU/Linux help us

rethink accessibility solutions
for the blind?

Michael Pozhidaev
michael.pozhidaev@gmail.com

Linux Journal, 2015, issue 7
(Texus, US)

Michael Pozhidaev has been dream-
ing of changing the ways of accessi-
ble interaction for people with vision
problems for more than ten wyears.
Michael s 32 years old, has a PhD
in computer sciences and 15 employed
as a software architect at Electronic
Moscow. He loves piano music and
goes crazy when he gets a chance to
take a flight on a big jet or visit a new
airport. He welcomes messages sent
to michael.pozhidaev@gmail.com.

When blind people work on personal com-
puters, their mental perception of images
replaces visual data on the screen. Users
construct these images by getting portions
of data transmitted from the machine in one
of two alternative ways: either through
the help of a speech synthesizer or through
a braille display. The most popular solution
to this kind of accessibility technology allows
users to work in a typical graphical user in-
terface (GUI) with the assistance of screen-
reading software. The utilities, usually called

screen readers, announce every step users
perform by describing each change occurring
on the screen as words.

This approach was a true breakthrough
in the world of accessibility for blind peo-
ple in information technologies. There have
been a tremendous number of success sto-
ries of people with disabilities who are able
to work, study and do a lot of other things
completely on their own. Despite these
wonderful benefits, there still are unresolved
problems, mainly caused by the GUI it-
self. When using existing screen readers,
the mental images should correctly conform
to the rather complicated window environ-
ment. Children who are born blind are never
able to see the sky and clouds. How can
they understand a screen reader’s feedback?
The feedback always comes in terms of GUI
elements, which always have a visual na-
ture. Would blind people feel comfortable
enough using this? Audible announcements
of GUI changes on a computer might be
a suitable solution if users had some prior
experience in a windows system before los-
ing their eyesight. Unfortunately, this is not
always the case.

The second reason to look for an alterna-
tive solution is the fact that GUIs are conve-
nient and effective only with a mouse. Un-
fortunately, a mouse typically is not used
for work with screen readers. Blind users
have to work with keyboards only, sometimes
emulating mouse actions with keyboard com-
mands.

1 The LUWRAIN Project

All of these factors make work a major strug-
gle with a GUI, and research has to con-
tinue to discover new ways of interacting
to improve the situation. Research efforts
have yielded some new technologies, such as
Adriane, but let’s take a closer look at one
more concept.

LUWRAIN is a GNU/Linux distribution
in which the main user environment as an
implementation on Java. Although its main
part is suitable for running on any other op-
erating system that has proper Java support,
LUWRAIN launched in this way will be less
functional than as a standalone OS.

LUWRAIN attempts to accomplish
the following tasks:

e Making personal computers accessible
to blind people who were unable to use
them before due to various reasons.

e Making the environment of popular ev-
eryday applications more comfortable
and effective for people who spend a lot
of time working.

e Suggesting a solution for the problem
of distributing accessible applications
for blind people (it is exactly for this
reason that LUWRAIN supports launch
on any system with Java support).

LUWRAIN isn’t a competitor to screen
readers, because screen readers attempt
to ensure that all things accessible for sighted
users will be accessible for blind users as well,
but without any care for practicality or con-
venience. On the contrary, LUWRAIN of-
fers a solution for everyday work for a fixed

number of tasks with maximum comfort and
speed. If LUWRAIN’s functionality is insuf-
ficient for a particular situation, you can in-
stall it just as an application and leave other
tools untouched.

2 Text-Based Interface

LUWRAIN’s main characteristic that distin-
guishes it from a screen reader’s approach
is its new type of interaction. If you
want to make an environment comfortable
and effective, you should simplify the image
in the mind that reflects the working space on
the screen. While working, a user’s thoughts
should be focused on the work itself, and
needless interface elements should not dis-
tract the user. Regarding LUWRAIN’s user
environment, it would be fair to acknowledge
that LUWRAIN adopts a number of ideas
previously proposed in the Emacspeak add-
on for the GNU Emacs text editor.

Let’s take a closer look at the LUWRAIN
interface. LUWRAIN rethinks the behavior
of popular widgets in such a way that no vi-
sual data may be involved in their represen-
tation. A monitor still is used, but now it
plays a supplementary role. Pictures on it
help users with low vision, but there is noth-
ing difficult if graphical information is totally
unknown. Next, LUWRAIN also requires
a redesign of general application structure,
because all new controls must be organized
in a completely different way from what peo-
ple are used to seeing with a GUI.

Historically, when the GUI Emacs authors
tried to implement that definitely were much
larger than the bounds of the text editor
(for example, mail reading, calendars, file

http://www.knopper.net/knoppix-adriane/index-en.html
http://emacspeak.sourceforge.net/

management and so on), they didn’t real-
ize what a brilliant idea they actually had.
They clearly proved that nearly all objects
can be represented in text form only.
deed, roughly speaking, if you’d like to write
somebody a message, you can ask one script
to prepare a message template in a text file
having a ”To:” string on the first line, a ” Sub-
ject:” on the second and the message body
on the rest. After filling out all the nec-
essary values in the offered template, you
call another script, which looks at what you
wrote, constructs a valid e-mail, and sends it
through your favorite relay.

The text itself (as well as everything that
can be described as text) is the most suit-
able data structure for blind people because

they can explore it easily through speech or
braille.

In-

e When users jump from one line to an-
other, they hear the line’s text.

e When moving from letter to letter, users
get the character under the new cursor
position.

Several extra commands enhance naviga-
tion. For example, when jumping between
words, users would "hear” the next word.
This behavior always is the same, regardless
of what screen-reading technology the users
choose. The substantial difference is that
in a GUI, this kind of navigation is used
for text edits only (which are, apparently,
just a subset of a large variety of existing
controls). In Emacspeak and in LUWRAIN,
it is used everywhere.

Besides generally improved accessibility
with a ubiquitous text interface, users have

some additional advantages. If the text is ev-
erywhere, users can do a text search in any
place they want. Users can press the corre-
sponding hotkey and type the corresponding
substring. After that, the search either finds
the substring or ensures that this string is ab-
sent. The second useful aspect is that in any
arbitrary place, regardless of whether it is
a file manager panel, a calendar page, an ad-
dress book entry or a media player control, it
is possible to copy the entire content as text
to the clipboard — for example, for e-mailing
to a friend.

It is important to be able to know what
items are absent on the screen, because
screen readers mostly take care of describ-
ing only the elements they recognize. Usu-
ally there is no way to ensure that something
isn’t shown on the screen, because users can’t
trust that screen readers understand the GUI
completely. If everything is offered in text
form, this is easy to do, because no problems
arise when going through the text from top
to bottom. In a GUI, on the other hand, it is
much harder, because the focus doesn’t need
to stop at every element on the screen. Some
of them can be skipped.

3 Constructing an Application
for LUWRAIN

It is impractical to try to access an entire
application’s functionality in one solid text
space, so usually it is recommended to split
an application’s objects into several parts
called areas. Each area implement the text-
interface behavior. Their exact setting is
dependent on the purpose of the applica-
tion and should be designed very carefully.

If you consider a double-sided file manager,
you can see that it requires three indepen-
dent areas: two panels for directory brows-
ing (left and right) and one more for list-
ing continuous user actions (copying, mov-
ing or deleting). All of them behave inde-
pendently,which means they have their own
cursor, and changes in one of them do not
influence the others.

All of them are shown on the screen
in such a way that allows filling the entire
screen space (as tiles). Two panels are po-
sitioned as usual, and the action list goes
to the bottom. Once again, appearance on
the screen no longer plays a substantial role;
it is just a complementary source of infor-
mation for people with low vision. But as
the screen still exists, let me mention a few
additional details about it. For better adjust-
ment for special needs, it requires some new
features. Each area on the screen is filled only
with text data drawn with a monospaced
font. Users can choose the color scheme and
the font size freely during work without any
support by the application.

Each of the three areas, which the file
manager consists of, behaves as a list. How-
ever, no matter what they are, they should
be accessible as text. Each particular item
is on a separate line; the movements are an-
nounced with some supplementary informa-
tion, such as whether the current item is a di-
rectory or a regular file. All extra comments
can be switched off if the user holds the Ctrl
button on the keyboard while jumping from
line to line. This little trick significantly in-
creases efficiency, but it is not the only exam-
ple in the file manager. LUWRAIN has such
tricks in various places everywhere, and that

makes the environment truly more suitable
for blind people compared with screen read-
ers, which sometimes are not able to distin-
guish the main content from the decoration.

4 LUWRAIN Widgets

LUWRAIN has its own library of classes
that are useful for constructing an interface
with the controls. Generally it is similar
to the usual GUI widgets, but redesigned
in the ways described previously. This li-
brary includes lists, trees, text inputs, forms,
menus, some special items like calendars and
so on. Of these, the forms are probably
the most difficult. The forms in LUWRAIN
are text areas containing one particular con-
trol on each line. Lines begin with a con-
trol name and can represent a text input,
a yes/no check box, an embedded list and
so on. Lists always take a single line while
a selection is always performed in a separate
area.

In contrast to GNU Emacs, LUWRAIN
doesn’t have real buffers with real text con-
tent for all objects. Text representation is
there just as some sort of intermediate level,
obscuring internal structures. The internal
structures can be very complicated without
any restrictions, and their logical level makes
them easily observable by a user. You can
design your own approach on how to handle
any new nontrivial data model in a text way,
creating a new custom control.

5 The Environment Internals

Behind a rather simple front-end concep-
tion, there is a complete Ul infrastructure

based on events dispatching and handling
with the support of multithreading and user
dialogs (like some type of modal windows).
As I already mentioned, the main language
chosen for LUWRAIN is Java. Discussing
all reasons for this decision here is almost
pointless, as the pros and cons for any par-
ticular language are very arguable. But, one
thing plays a crucial role — the substantial
number of existing libraries created for Java
developers, the most important being Java-
Mail, Rome (the RSS parser), Apache POI
(office document filters) and many others.
The LUWRAIN core translates various in-
put commands and internal environment ac-
tions to events that pass through the main
loop queue and, after that, are dispatched
to the corresponding object, considered to be
the most suitable destination.

The events also are useful for multithread-
ing synchronization. The application may is-
sue as many threads as it wants, although
only one of them is allowed to perform oper-
ations with the user environment. For this
purpose, LUWRAIN has a corresponding
type of events that safely allow data exchange
between the background threads and user in-
terface.

6 Pop-up Areas and Applica-
tions

The main loop procedure is capable of the re-
cursive calls needed for the appearance of di-
alog areas (modal windows). These ar-
eas can be shown as a single method call
placed inside some other wrapping handler.
An existing unfinished upper handler freezes
the top-level event loop, and that potentially

could freeze the entire user environment, but
the recursive loop instances solve this prob-
lem.

A user gets the dialog areas along one
side of the screen. Regular applications
may open them only along the bottom, but
LUWRAIN opens its main menu on the left
(yes, LUWRAIN has a main menu, which
can be opened by the corresponding but-
ton on the keyboard where everybody ex-
pects it to be), and on the right, there is
the context menu with the actions associ-
ated with the focused object. Most actions
in the main menu are accessible through
short commands, which can be issued from
the command line. It takes the system-wide
commands only, which should be applicable
regardless of what applications are currently
opened. Having this additional input method
increases speed, because in a noisy environ-
ment — say, in an airport or aircraft — it is
easier to type "message” quickly than to se-
lect menu items by listening their names.

Applications in LUWRAIN always fill
the entire screen space. Only the amount
of system resources limits the number of con-
currently launched instances. Users easily
can switch between applications by pressing
Alt-Tab. (Actually, the term ”application”
isn’t the most proper one, as LUWRAIN
applications share the same memory space
inside the Java virtual machine and don’t
go to separate processes, but it’s the easi-
est term to describe them.) The LUWRAIN
distribution includes several standard appli-
cations, such as a double-sided file manager,
mail client, feeds reader, music player, com-
mand line to launch bash expressions (imple-
mented through Java Native Interface), ad-

dress book, personal scheduler, office docu-
ment viewer and editor, notepad and others.

7 GNU/Linux Environment

Now you know enough about everything that
happens inside the Java virtual machine, but
there are a lot of external things that re-
volve around it. LUWRAIN should inter-
act with system level services for managing
network interfaces, attaching/detaching re-
movable media and for other similar tasks.
The most convenient way to do that is, ev-
idently, D-Bus. D-Bus is accessible from
Java, and a number of existing D-Bus ser-
vices cover a lot of needed features (for ex-
ample, you can use Network Manager for net-
work configuring). This means LUWRAIN
will be consistent, as more services are in-
troduced to D-Bus. If one day Lennart
Poettering and the community around him
get system in a commonly acceptable state
that no longer raises any concerns, that will
add the final missing piece to a nice design
of LUWRAIN as a complete operating sys-
tem.

LUWRAIN is capable of being installed
by blind people freely without any sighted
help. This is achieved by cloning a live CD
system to the hard drive and can be done
rather quickly.

The LUWRALIN story would be really nice
if all things could be executed inside the Java
virtual machine, but unfortunately, that’s
not the case. Let’s step back a bit and
think about whether LUWRAIN is applica-
ble for all commonly required tasks. It is not
necessary to consider The GIMP or various
types of CAD software, because the nature

of such programs requires eyesight, regardless
of what interface is offered for them. How-
ever, there are a couple cases that are excep-
tions for LUWRAIN. These are Web brows-
ing and some closed applications (the most
popular example of this is Skype). You can’t
complete these tasks in Java with a text-
based interface, so there needs to be some
alternative solutions.

Both Mozilla Firefox and Chromium sup-
port accessibility features for blind people
but in different ways. Chromium does it
through its Google ChromeVox extension,
which can work independently from any
other GNU/Linux assistive infrastructure. I
don’t discuss it in detail here because it
just works. Firefox does it through ac-
cess to the so-called ' AT-SPI (Assistive Tech-
nology - Service Provider Interface). AT-
SPI initially was a part of the GNOME
Accessibility Project and allows gathering
all information of launched applications and
their GUI elements into a single place. Af-
ter collecting this information, it can be
passed to some assistive technology that
transforms it into speech and provides it
to the user. Usually this job is done
by the Orca screen reader, but Orca itself is
strongly linked to the GNOME environment
and isn’t used for any LUWRAIN tasks.
LUWRAIN includes a special tool to replace
Orca that is intended for collecting AT-SPI
information and translating it to a human-
understandable form. (Great thanks to Mike
Gorse, who always is ready to help and clar-
ify details of AT-SPI behavior!) The nature
of basic Skype operations allows their trans-

formation to a text-based interface, but it
is closed software and LUWRAIN is unable

http://chromevox.com
https://wiki.gnome.org/Accessibility

to do anything with it. In the meantime,
the GNU /Linux version’s Ul is based on Qt,
which also is supported by the AT-SPI func-
tions. All that is needed is to compile and
install the special qt-at-spi bridge.

No doubt, it would be better not to have
any exceptions for LUWRAIN’s text-based
interface proposal, but we should be happy
that it is possible to overcome such special
cases In an appropriate way.

Speaking of the LUWRAIN details that
work outside the Java virtual machine, let me
point out that all tools launched in the X.org
server (LUWRAIN’s main window, a Web
browser, Skype) are under control of the spe-
cial tiny window manager (of course, not
written from scratch).

Conclusion

In concluding this LUWRAIN technical
overview, it is interesting to consider
what LUWRAIN can and cannot change
in the lives of potential users, although this
project is still in a rather early stage. How
will users possibly perceive of this system,
which has many significant differences com-
pared with most existing solutions? What
new areas could it open in the technical
world?

First and most important, LUWRAIN
is aimed to be useful for users who previ-
ously were unable to interact with PCs due
to various reasons. It might be appreci-
ated by seniors for general operations, be-
cause LUWRAIN requires a minimal amount
of technical knowledge. Its interface is con-
structed in a way that makes usage possible
for most users after following the short sys-

tem guide offered for everybody on booting
the live CD. Experienced users likely will be
able to work without any prior learning at
all (according to a series of our small experi-

ments).
However, some things still may raise
concerns. The environment is "in itself”,

which means that creating a new applica-
tion will not make it available for blind
users by default. Also remember that
LUWRAIN doesn’t imply the exclusive se-
lection of a platform to work. Users can
have several machines for different tasks. On
a desktop, users can continue using a par-
ticular required application, but on a lap-
top, LUWRAIN could offer a better envi-
ronment than any other OS. Also, if people
want to use LUWRAIN due to its better or-
ganization, but aren’t able to abandon Mi-
crosoft Windows or Mac OS X (for instance,
because other family members use it), they
still can install LUWRAIN on any OS with
proper Java SE support. The same is true
if users are unable to switch to GNU /Linux
due to some specific software.

Let me also note that LUWRAIN al-
lows using bash expressions. Does anyone
refuse to ping just because it is a command-
line tool? The command line itself is one
of the most accessible conceptions for blind
people.

Because LUWRAIN provides an easily un-
derstandable interface for blind users (hope-
fully) and potentially could launch on any
OS with Java SE support, it could be con-
sidered as a platform for distributing ac-
cessible speech-enabled applications. Per-
haps there are vendors who would like to
have an application that will be accessible

http://projects.kde.org/qtatspi

reliably to blind people. For example, it
could be used for payment systems, social
applications for health care purposes and
so on. With LUWRAIN, vendors can do
this without any prior experience in creat-
ing accessible tools, because it just takes al-

ready prepared Java classes. LUWRAIN not
only promises that it will be understand-
able for blind users, but in addition, it offers
a platform for launching a newly created ap-
plication, which is free of charge, eliminating
barriers to software costs.

	The LUWRAIN Project
	Text-Based Interface
	Constructing an Application for LUWRAIN
	LUWRAIN Widgets
	The Environment Internals
	Pop-up Areas and Applications
	GNU/Linux Environment

